
Luigi Buglione

Top10 Metrics - Metric Cards

White Paper

Version 1.0 – April 1, 2011

How to reference this document:
Luigi Buglione, Top10 Metrics: Metric Cards, version 1.0, WP-2011-01, White Paper, April 1 2011

For more information about other Process Improvement, Software Measurement & Quality issues, please
visit:
< http://www.semq.eu > or contact the Author by email at luigi.buglione@computer.org

Copyright  2011 Luigi Buglione. All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without the consensus of the
Author.

First Printing: April 2011

WP-2011-01 Top10 Metrics – Metric Cards - L.Buglione 2011 Page 2/18

http://www.semq.eu/
mailto:luigi.buglione@computer.org

Table of Contents

1 Document Information .. 4
1.1 Executive Summary ... 4
1.2 History .. 4
1.3 Acronyms ... 4
1.4 References .. 5

2 Introduction ... 6
2.1 Background and Rationale ... 6
2.2 How Much to Measure? ... 6
2.3 Metric Cards ... 7

3 Metrics cards ... 9
3.1 SPS – Software Physical Size .. 9
3.2 SFS – Software Functional Size .. 10
3.3 CYC – McCabe Cyclomatic Complexity ... 12
3.4 SDE – Software Development Effort ... 13
3.5 SDD – Software Development Duration ... 14
3.6 SDR – Software Defect Rate ... 15
3.7 CPI – Cost Performance Index ... 17
3.8 SPI – Schedule Performance Index .. 18
3.9 EAV – Earned Value .. 19
3.10 TEC – Test Coverage ... 20

WP-2011-01 Top10 Metrics – Metric Cards - L.Buglione 2011 Page 3/18

1 Document Information

1.1 Executive Summary
The purpose of this document is to propose a list of balanced and selected set of measures [3]

useful for being used in a measurement plan according to the ISO/IEC 15504 Process Reference
Model (PRM) [1]. Such measures are defined and described using a template derived from the
Measurement Information Model (MIM) proposed in the Appendix A of ISO/IEC 15939 standard
[2]. This document could represent a starting point for the MASP (Metrics in Automotive
Software Projects) working group within the Automotive SPIN Italy (www.automotive-spin.it).

1.2 History
Revision Date Changes since last revision

1.00 April 1, 2011 • First issue

1.3 Acronyms
Acronym Description

A-SPIN Automotive SPIN Italia (www.automotive-spin.it)
BCWP Budgeted Cost of Work Performed
BFC Base Functional Component
BSC Balanced Scorecard
CPI Cost Performance Index
CYC McCabe Cyclomatic Complexity
EAV Earned Value
ENG Engineering process group (ISO/IEC 15504)
EV Earned Value

GQM Goal-Question-Metric
IEC International Electrotechnical Commission (www.iec.ch)
IS International Standard

ISO International Organization for Standardization (www.iso.org)
LOC Line of Code
MAN Management process group (ISO/IEC 15504)
MASP Metrics in Automotive Software Projects
MIM Measurement Information Model (ISO/IEC 15939:2007, App.A)
PAM Process Assessment Model
PRM Process Reference Model
SDD Software Development Duration
SDE Software Development Effort
SDR Software Defect Rate
SFS Software Functional Size
SLC Software Life Cycle
SPI Schedule Performance Index

SPICE Software Process Improvement Capability dEtermination (ISO/IEC 15504)
SPS Software Physical Size
SUP Support process group (ISO/IEC 15504)
TEC Test Coverage

WP-2011-01 Top10 Metrics – Metric Cards - L.Buglione 2011 Page 4/18

http://www.iso.org/
http://www.iec.ch/
http://www.automotive-spin.it/
http://www.automotive-spin.it/

1.4 References
Ref Title
[1] ISO/IEC, IS 15504-2:2003 – Information Technology – Process Assessment – Part 2: Performing an

assessment, International Organization for Standardization, October 2003, URL: www.iso.org
[2] ISO/IEC, IS 15939:2007 – Systems and Software Engineering – Measurement process, International

Organization for Standardization, February 2007, URL: www.iso.org
[3] Buglione L., Top metrics for SPICE-compliant projects, Automotive-SPIN Italia, 5° Automotive SPIN

workshop, Milan (Italy), June 4 2009, URL: www.automotive-spin.it
[4] Buglione L. & Abran A., Multidimensional Project Management Tracking & Control - Related

Measurement Issues, Proceedings of SMEF 2005, Software Measurement European Forum, 16-18 March
2005, Rome (Italy), pp. 205-214, URL: www.dpo.it/smef2005/filez/proceedings.pdf

[5] Automotive SIG., Automotive SPICE® Process Reference Model (PRM), v4.5, May 10 2010, URL:
www.automotivespice.com

WP-2011-01 Top10 Metrics – Metric Cards - L.Buglione 2011 Page 5/18

http://www.automotivespice.com/
http://www.dpo.it/smef2005/filez/proceedings.pdf
http://www.automotive-spin.it/
http://www.iso.org/
http://www.iso.org/

2 Introduction

2.1 Background and Rationale
One of the most known motto about measurement is that ‘you cannot control what you cannot

measure’ but moving a step before ‘you cannot measure what you cannot define’. This is
fundamental because – even if a certain concept can be shared – not necessarily its definition can
be applied exactly in the same way among different people. Often measures are simply cited
and/or referred through a short title, without providing details that can clearly define what
anybody should count in a consistent way. For instance, looking at one of the earliest measures
adopted in Software Engineering – Lines of Code (LOC) – asking to few people it is not trivial to
obtain the same answer about what must be counted or excluded. The same when dealing with
defects (e.g. pre or post delivery? What is the boundary between debugging and testing, in order
to record the right number of defects?) or the effort to be recorded, dealing also with a proper
level of granularity (e.g. man-hours better than man-days). Thus, the solution can beside simply
in a more granular and detailed definition for each measure of interest. The way suggested in
several technical reports and studies is a ‘metric card’, showing few details helping people to
apply the same definition for the same concept, reducing the probability to have historical data
not comparable or needing a series of assumptions for deriving the ‘numbers’.

2.2 How Much to Measure?
Another typical problem in measurement is about the ‘how much’ to measure. Of course the

budget for the measurement process in a project/activity must be limited within a certain
established percentage and some criteria for selecting and prioritizing those measures must be set.
Referring to the ISO 15504 and Automotive SPICE PRM, in [3] a set of measures balanced
against the measurable entity (project, resource, process, product) was proposed, as shown in next
table. Those measures were classified according to the EAM (Entity-Attribute-Measure)
taxonomy and associated to one (or more) processes from the Automotive SPICE PRM [5].

Entity (E) Attribute (A) Measure (M) Threshold A-SPICE

 Project Planning compliance Effort (man/hrs) per SLC phase, per iteration (abs,
%)

(profiles on
historical data)

MAN.3

 Resource Time % of open complaints / notes for delaying in
providing the agreed furniture (tracked) per
contract

≤10% ACQ.4

 Process* Time performance SPI (Schedule Performance Index) ongoing MAN.3

 Process* Cost performance CPI (Cost Performance Index) ongoing MAN.3

 Process QA performance % of non-conformances still open ≤15% SUP.1

 Process* Maturity Problem Reports (PR) by status (open, closed) (profiles on
historical data)

SUP.9

 Process Changeability Avg Change Requests (CR) working time by
status

(profiles on
historical data)

SUP.8 -
SUP.10

 Process* Planning reliability Requirements Volatility of ‘Scope Creep’ Index (#
of modified/new UR not formally traced / tot. #
UR) by iteration

≤10% ENG.4

 Product* Code Length Kilo Lines of Code (KLOC) [system, function,
module] c.a 5 functions per module

(abs, 100-150,
700-1000)

ENG.4

 Product* Functional Size Functional Size (fsu) [system] (abs) ENG.4

 Product* Maintainability Cyclomatic Complexity (of a function) ≤20 ENG.5, ENG.6

WP-2011-01 Top10 Metrics – Metric Cards - L.Buglione 2011 Page 6/18

Entity (E) Attribute (A) Measure (M) Threshold A-SPICE

 Product* Maintainability # of transfer parameters in a function ≤5 ENG.6

 Product* Maintainability Average size of a function statement (operands +
operators / # of executable statements)

≤10 ENG.6

 Product* Code Stability # of exit points from a function 1 ENG.5, ENG.6

 Product* Code Stability # of calling functions of a function (fan-out) ≤10 ENG.5, ENG.6

 Product Code Stability # of execution paths in a function ≤1000 ENG.5, ENG.6

 Product Testability Branch Coverage 100% ENG.8

 Product* Testability Max # nesting depth of the function control
structure

≤4 ENG.8

Since these are only titles, a series of ‘metric cards’ will be proposed in Section 2. The
information provided tries to answer to the “5Ws+H” rule (Who, What, Why, Where, When and
How), with few, dedicated fields in the table structure.

The list of possible measures described here represents a suggestion and can be updated during
time, adding or updating the existing cards. The idea behind the ‘top 10 metrics’ inserted in the
document title would simply suggest to maintain the focus on few, core measures (possibly)
representing more viewpoints and measurable entities in a project measurement plan. The further
core concept suggested to follow is to maximize the informative value from the selected
measures, selecting the measures taking care also to their cross-relationships along the different
SLC phases, as done in a Balanced Scorecard (BSC). When dealing with a plenty of potential
measures and need to reduce their amount to a core, vital, few ones, the BMP (Balancing
Multiple Perspectives) technique can be applied [4].

In order to achieve this goal and make this document updated as much as possible, please send
any comment/suggestion to the following email address:

luigi.buglione@computer.org

2.3 Metric Cards
In Section 3.x, a series of ‘metric cards’ are proposed, with the following structure and fields:

• Measure title/code: title and (eventual) code for the measure
• ISO/IEC 15504: associated ISO/IEC 15504-2 PRM process
• Purpose: a short sentence summarizing the informative goal of the measure
• Entity: measurable entity for the measure : {organization | project | resource |

process | product}
• Attribute: the related attribute for the measured entity
• SLC phase where applied: the SLC phase where the measure can be applied,

according to the adopted type and taxonomy
• Unit of measure: the countable unit for such measure
• Measurement scale: {absolute | interval | ordinal | absolute | nominal }
• Counting Rule: a brief sentence summarizing what and how must be counted
• Formula and Legend: the mathematical expression for the previous field
• Responsible for Gathering Data: the people assigned to gather needed data for

computing that measure

WP-2011-01 Top10 Metrics – Metric Cards - L.Buglione 2011 Page 7/18

mailto:luigi.buglione@computer.org

• Gathering Frequency: the suggested frequency for gathering that measure
• Gathering Methodology: the suggested methodology/technique for gathering

that measure
• Counting examples: one or more short calculation examples for showing the way

the data must be applied for computing that measure
• Comments/Notes: eventual additional comments and/or notes for specifying or

providing more information about that measure
• Possible Associated Questions: a list of possible associated questions in a sort of

reverse-GQM analysis.

WP-2011-01 Top10 Metrics – Metric Cards - L.Buglione 2011 Page 8/18

3 Metrics cards

3.1 SPS – Software Physical Size
Measure Name SPS – Software Physical Size ISO/IEC 15504 ENG.4

Purpose To quantify the amount of work for producing a software solution by the length of its code.

Entity Product Attribute Code Length

SLC phase where
applied

Coding

Unit of Measure(s) Line(s) of Code (LOC)

NOTE : it can be counted referring to different levels of granularity (project, modules, classes, etc..).
NOTE : in order to compare the source code among programming languages different in terms of
grammar and syntax, the logical statements are taken into account when speaking about LOC.

Measurement Scale Absolute

Counting rule To count the number of logical statements within the LOCs composing a piece of software

Formula

∑
=

=
n

i
iLSLOC

1

Legend:
LOC = Lines Of Code

LS = Logical Statement
i = number of modules, blocks, etc.

Responsible for
Gathering Data

Programmer

Gathering frequency At each check-in in the Software Configuration Management (SCM) tool.

Gathering
methodology

Automatic

NOTE : typically using the configuration management environment or a devoted source counting tool.

Examples • http://en.wikipedia.org/wiki/Source_lines_of_code

Comments/Notes • It’s the first consolidated and diffused absolute measure for tracking the production of
software code

• It measures the length of the code, not its functionalities. Therefore the ‘backfiring’
practice (deriving Function Points – whatever the methodology (IFPUG, COSMIC,
etc.) from LOC on the basis of established conversion ratios) should be avoided.

• Some suggestions and templates for describing a shared definition of LOC into an
organization is in this SEI’s TR:
www.sei.cmu.edu/library/abstracts/reports/92tr020.cfm

• Several automatic tools are available for counting LOC, typically specialized by
programming languages

Possible associated
questions

• Which is the length of such piece of software?
• How many instructions are contained into that software?
• Does the software include a sufficient amount of comments?
• …

WP-2011-01 Top10 Metrics – Metric Cards - L.Buglione 2011 Page 9/18

http://www.sei.cmu.edu/library/abstracts/reports/92tr020.cfm
http://en.wikipedia.org/wiki/Source_lines_of_code

3.2 SFS – Software Functional Size
Measure Name SFS – Software Functional Size ISO/IEC 15504 ENG.4

Purpose To calculate the size of the functionalities to be added, changed, inserted in a software
solution.

Entity Product Attribute Functional Size

SLC phase where
applied

Bid (early-Stage) phase, Design phase, Project Closure.

Unit of Measure(s) Fsu(Functional Size Unit)

Note: each fsu is composed by its own BFCs.

Measurement Scale Ratio

Counting rule To calculate the weighted sum by BFCs (Base Functional Components) considered in the
chosen Functional Size Measurement (FSM) method.

Formula

∑ ∑
= =

=
n

i

m

j
ji wBFCfsu

1 1

*

Legend:
fsu = functional size unit

BFC = Base Functional Component
w = weight

n = max number of BFC for that FSM method
m = max number of complexity levels

Responsible for
Gathering Data

Functional Analyst

Gathering frequency Typically to be counted in three moments in time in the project lifetime:
 After the elicitation of high-level requirements (HLR)
 At the end of the Design phase
 At the Project closure

Gathering
methodology

Manual
NOTE : Fsu cannot be automatically calculated from FURs expressed in natural language. There are tools
able to make the count but moving from a pre-analyzed software object (e.g. expressed in UML
diagrams/formats), that means to have yet performed the Analysis & Design phase(s).

Examples • URL: http://www.softwaremetrics.com/freemanual.htm
• URL : http://www.semq.eu/leng/sizestfsm.htm

Comments/Notes • Fsu is the generic term for including all the possible units of measure related to the
several FSM methods

• BFC depends on the FSM method (e.g. for the IFPUG FPA, BFC are 5: ILF, EIF, EI,
EO, EQ; for COSMIC are 4: Entry, Exit, Read, Write; etc.)

• COSMIC is the solely FSM method without a weighting system: in such case, please
consider the ‘w’ variable always equal to 1.

• Any FSM method sizes only the FUR (Functional User Requirements) for a software
product. Therefore NFR (Non-Functional Requirements) are out of scope from this
measure. For instance, IFPUG is working on a new method called SNAP (Software
Non-functional Assessment Process), to be released by 2011. Or the ISO/IEC 9126-1
Quality Model attributes can be considered, looking at their related metrics in parts 2-3-
4.

• For estimation purposes, it is very useful to maintain the data gathering in the project
historical database (PHD) at the BFC level: a prediction model taking care of 2+ BFC
in a multiple regression model is more efficient than using the whole fsu value.

Possible associated
questions

• How many functions are going to be implemented in the software solution?
• Which is the value of functional requirements for such software?
• …

WP-2011-01 Top10 Metrics – Metric Cards - L.Buglione 2011 Page 10/18

http://www.semq.eu/leng/sizestfsm.htm
http://www.softwaremetrics.com/freemanual.htm

3.3 CYC – McCabe Cyclomatic Complexity
Measure Name CYC – McCabe Cyclomatic Complexity ISO/IEC 15504 ENG.5

ENG.6

Purpose To take under control the level of maintainability of a software program.

Entity Product Attribute Maintainability

SLC phase where
applied

Coding

Unit of Measure(s) It can be applied to several levels of granularity (individual functions, modules, methods,
classes of a program).

Measurement Scale Interval

Counting rule The v(G) is given by the summation of the number of edge minus the number of nodes plus
the number of connected components in a function (or module, method, class – as stated in
the ‘Unit of Measure’ field).

Formula

pneGv +−=)(

Legend:
v(G) = Cyclomatic Complesity

e = edge(s)
n = node(s)

p = connected component(s)

Responsible for
Gathering Data

Programmer

Gathering frequency ---

Gathering
methodology

Automatic

Examples • http://www.literateprogramming.com/mccabe.pdf (see in the paper)

Comments/Notes • Source : T.McCabe, A complexity measure, IEEE Transactions on Software
Engineering, Vol. SE-2, No.4, December 1976, pp. 308-320, URL:
http://www.literateprogramming.com/mccabe.pdf

• Further variants and evolution of the initial concepts are reported in Wikipedia
(http://en.wikipedia.org/wiki/Cyclomatic_complexity)

Possible associated
questions

• Which is the level of maintainability for such software?
• Has the software need to be refactored?
• ...

WP-2011-01 Top10 Metrics – Metric Cards - L.Buglione 2011 Page 11/18

http://en.wikipedia.org/wiki/Cyclomatic_complexity
http://www.literateprogramming.com/mccabe.pdf
http://www.literateprogramming.com/mccabe.pdf

3.4 SDE – Software Development Effort
Measure Name SDE – Software Development Effort ISO/IEC 15504 MAN.3

Purpose To measure the time spent to complete a software development project or a single
process/activity.

Entity Project Attribute Effort

SLC phase where
applied

All the SLC phases

Unit of Measure(s) Man/days (or man/hours)

NOTE : since different definitions and amount of hours for the working week are adopted worldwide, it is
strongly suggested to apply the man/hour definition, in order to be consistent for benchmarking
purposes.

Measurement Scale Absolute

Counting rule To sum the work effort by all the SLC phases defined and applied within an organization.
NOTE : for instance, ISBSG in its repository defines the following phases: Plan, Specify, Design, Build,
Test, Implementation, Unphased.
NOTE : a consequence when applying for man/days as the counting unit, it is to pay attention in taking
note of the extra-time spent per day from project resources. If not done, the risk is to historicize less
working time. This could lead to underestimations for next projects, moving from low effort values
recorded in historical databases.

Formula

∑
=

=
n

i
iLCPESDE

1

Legend:
SDE = Software Development Effort

LCPE = Life Cycle Phase Effort
i = number of LCP defined in the organization

Responsible for
Gathering Data

Project Manager

Gathering frequency At the end of each SLC phase

Gathering
methodology

Semi-automatic

NOTE : e.g. using internal time planning & tracking systems or e.g. MS-Project, Primavera

Examples • http://csse.usc.edu/csse/TECHRPTS/2008/usc-csse-2008-836/usc-csse-2008-836.pdf
• http://s3.amazonaws.com/publicationslist.org/data/a.abran/ref-2040/909.pdf

Comments/Notes • It is preferable to use the more granular unit of measure as possible (e.g. man-hours) for
allowing comparisons among organizations having different standards (e.g. in the
UU.SS typically a working week is 128-hrs long, while in Europe is 160 hrs-long).

• ISBSG- International Software Benchmarking Standards Group (www.isbsg.org)
• A practical usage is to take into account the percentages among the different phases

after classifying and clustering groups of projects with different characteristics (e.g.
programming language, application type, development type, etc...)

• ...

Possible associated
questions

• How much time do we spend for Project Management? And for Analysis?
• Is it proper the effort distribution among the SLC phases, compared with the defect

density detected after the delivery of the software?
• ...

WP-2011-01 Top10 Metrics – Metric Cards - L.Buglione 2011 Page 12/18

http://www.isbsg.org/
http://s3.amazonaws.com/publicationslist.org/data/a.abran/ref-2040/909.pdf
http://csse.usc.edu/csse/TECHRPTS/2008/usc-csse-2008-836/usc-csse-2008-836.pdf

3.5 SDD – Software Development Duration
Measure Name SDD – Software Development Duration ISO/IEC 15504 MAN.3

Purpose To measure the elapsed time from project start date through to project finish date.

Entity Project Attribute Duration

SLC phase where
applied

All the SLC phases

Unit of Measure(s) Man/days (or man/hours)

Measurement Scale Absolute

Counting rule To sum the calendar time by all the SLC phases defined and applied within an organization.

NOTE : for instance, ISBSG in its repository defines the following phases: Plan, Specify, Design, Build,
Test, Implementation, Unphased.

Formula

∑
=

=
n

i
iLCPDSDD

1

Legend:
SDE = Software Development Duration

LCPD = Life Cycle Phase Duration
i = number of LCP defined in the organization

Responsible for
Gathering Data

Project Manager

Gathering frequency At least at the project start and closure.

Gathering
methodology

Semi-automatic

NOTE : e.g. using internal time planning & tracking systems or e.g. MS-Project, Primavera

Examples • http://us.generation-nt.com/answer/simple-project-duration-question-help-
197334151.html

• www.isbsg.org/ISBSGnew.nsf/WebPages/2471C311A3AF7549CA2574580022835D
• www.tacticalprojectmanagement.com/attachments/049_IJPM%20Vandevoorde%20and

%20Vanhoucke.pdf

Comments/Notes • It is preferable to use the more granular unit of measure as possible (e.g. man-hours) for
allowing comparisons among organizations having different standards (e.g. in the
UU.SS typically a working week is 128-hrs long, while in Europe is 160 hrs-long).

• Note that well-known guides as the PMBOK (www.pmi.org) – the Project Management
Body of Knowledge – refers to the duration more than effort.

• Attention must be paid when an organization has extra-hours to be gathered in its effort
historical database for calculating the % usage of the project team within the
established schedule.

• …

Possible associated
questions

• How many calendar-days are needed to complete the project?
• Which is the ratio between project effort and its duration? Is it too high or low?
• …

WP-2011-01 Top10 Metrics – Metric Cards - L.Buglione 2011 Page 13/18

http://www.pmi.org/
http://www.tacticalprojectmanagement.com/attachments/049_IJPM%20Vandevoorde%20and%20Vanhoucke.pdf
http://www.tacticalprojectmanagement.com/attachments/049_IJPM%20Vandevoorde%20and%20Vanhoucke.pdf
http://www.isbsg.org/ISBSGnew.nsf/WebPages/2471C311A3AF7549CA2574580022835D
http://us.generation-nt.com/answer/simple-project-duration-question-help-197334151.html
http://us.generation-nt.com/answer/simple-project-duration-question-help-197334151.html

3.6 SDR – Software Defect Rate
Measure Name SDR – Software Defect Rate ISO/IEC 15504 MAN.3

MAN.4

Purpose To measure the quality of software product/item in terms of number of defects against its
product size unit.

Entity Product Attribute Defectability

SLC phase where
applied

Release phase

Unit of Measure(s) Defect
NOTE 1: there are several ways and criteria for classifying defects. E.g. by severity/priority, or by
typology, by origin, etc.
NOTE 2: “a problem which, if not corrected, could cause an application to either fail or to produce
incorrect results” (ISO/IEC 20926:2003 Software engineering -- IFPUG 4.1 Unadjusted functional size
measurement method -- Counting practices manual)

Measurement Scale Ratio

Counting rule To calculate the ratio between the number of defects (delivered or discovered) and its
product size (according to the product size unit used in the project monitoring).
NOTE : for benchmarking purposes, it is suggested to split the values (both in the upper and lower part of
the formula) according to the nature of the requirements originating them (functional; non-functional). If
not done, the risk is to obtain higher values than expected.

Formula

Size
DEFSDR =

Legend:
SDR = Software Defect Rate

DEF = no. of delivered defects
Size = Unit of Product Size (e.g. LOC, FP, etc.)

Responsible for
Gathering Data

Test Manager

Gathering frequency At each agreed release to the customer

Gathering
methodology

Automatic

NOTE : selecting a testing tool, the possibility of classification of defects would be a valuable feature.

Examples • www.pearsonhighered.com/assets/hip/us/hip_us_pearsonhighered/samplechapter/02017
29156.pdf (from “Metrics and Models in Software Quality Engineering”, S.Kan,
Addison-Wesley, 2/ed., 2002)

Comments/Notes • It can be expressed as delivered defects (i.e. expected number of residual/latent defects
after delivery) or actually discovered defects along the development life cycle

• When dealing with a product functional size, the reported defects in the upper part of
the ratio should be only the functional ones from black box testing. And so on,
according to the product attribute intended to be measured.

• A root-cause analysis (RCA) is suggested trying to detect the origin of a high SDR
value. A well-known technique specifically devoted to Software Testing is e.g. ODC
(Orthogonal Defect Classification): see www.chillarege.com/odc

• A possible taxonomy for classifying is the one proposed by UKSMA in 2000 (‘Quality
Standards – Defect Measurement Manual): see www.uksma.co.uk

Possible associated
questions

• How much effort is it needed to fix the detected bugs?
• Has the project planned a balanced number of test cases and related effort for the

Testing phase within the SLC?
• Which is the root-cause for a higher value of SDR than expected thresholds?
• …

WP-2011-01 Top10 Metrics – Metric Cards - L.Buglione 2011 Page 14/18

http://www.uksma.co.uk/
http://www.chillarege.com/odc
http://www.pearsonhighered.com/assets/hip/us/hip_us_pearsonhighered/samplechapter/0201729156.pdf
http://www.pearsonhighered.com/assets/hip/us/hip_us_pearsonhighered/samplechapter/0201729156.pdf
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList

3.7 CPI – Cost Performance Index
Measure Name CPI – Cost Performance Index ISO/IEC 15504 MAN.3

Purpose To verify if the project is profitable along its lifetime.

Entity Project Attribute Cost Performance

SLC phase where
applied

During the whole SLC

Unit of Measure(s) Activity value; activity cost

Measurement Scale Ratio

Counting rule To calculate the ratio between the Earned Value (EV) and Actual Costs (AC).

Formula

ACWP
BCWP

AC
EVCPI ==

Legend:
CPI = Cost Performance Index

EV =Earned Value
BCWP = Budgeted Cost of Work Performed

AC = Actual Cost
AC = Actual Cost of Work Performed

Responsible for
Gathering Data

Project Manager

Gathering frequency When needed

Gathering
methodology

Semi-automatic

NOTE : e.g. using internal time planning & tracking systems or e.g. MS-Project, Primavera

Examples • http://support.microsoft.com/kb/209115 (how to calculate CPI/SPI in MS-Project)

Comments/Notes • CPI ≥1 shows a favourable condition, while CPI<1 an unfavourable condition.
• It can be useful to have a further split of main figures by profile (at least covering

functional vs. non-functional processes) because their different average/median daily
cost (e.g. a project manager or a technical architect will cost more than a programmer,
but probably having different % of allocation during the project lifetime.

• www.suu.edu/faculty/christensend/evms/CPIstabilityNCMJ.pdf

Possible associated
questions

• Is it the project respecting its planned budget?
• Are we tracking at the proper level of granularity our internal cost figures for any

profile?
• …

WP-2011-01 Top10 Metrics – Metric Cards - L.Buglione 2011 Page 15/18

http://www.suu.edu/faculty/christensend/evms/CPIstabilityNCMJ.pdf
http://support.microsoft.com/kb/209115

3.8 SPI – Schedule Performance Index
Measure Name SPI – Schedule Performance Index ISO/IEC 15504 MAN.3

Purpose To measure the schedule efficiency of the project.

Entity Project Attribute Time Performance

SLC phase where
applied

During the whole SLC

Unit of Measure(s) Activity value (actual vs. planned)

Measurement Scale Ratio

Counting rule To calculate the ratio between its Earned Value (EV) and Planned Value (PV).

Formula

BCWS
BCWP

PV
BCWP

PV
EVSPI ===

Legend:
SPI = Schedule Performance Index

EV =Earned Value
BCWP = Budgeted Cost of Work Performed
BCWS = Budgeted Cost of Work Scheduled

PV = Planned Value

Responsible for
Gathering Data

Project Manager

Gathering frequency When needed

Gathering
methodology

Semi-automatic

NOTE : e.g. using internal time planning & tracking systems or e.g. MS-Project, Primavera

Examples • http://support.microsoft.com/kb/209115 (how to calculate CPI/SPI in MS-Project)
• www.pmboulevard.com/getFile.pmbx?fid=2156&cid=2798

Comments/Notes • SPI ≥1 shows a favourable condition, while SPI<1 an unfavourable condition.
• Tracking SPI will allow to understand if the plan is going to follow the expectations
• It can be useful to have a further split of main figures by requirement types (at least

functional vs. non-functional) because their different % of involvement per any possible
kind of project

Possible associated
questions

• Is it the project respecting its planned schedule?
• Did we validate our effort data from the project historical database (PHD)?
• …

WP-2011-01 Top10 Metrics – Metric Cards - L.Buglione 2011 Page 16/18

http://www.pmboulevard.com/getFile.pmbx?fid=2156&cid=2798
http://support.microsoft.com/kb/209115

3.9 EAV – Earned Value
Measure Name EAV – Earned Value ISO/IEC 15504 MAN.3

Purpose To measure project progress in an objective manner.

Entity Project Attribute Cost Progress

SLC phase where
applied

During the whole SLC

Unit of Measure(s) Activity value

Measurement Scale Interval

Counting rule To calculate the value of work performed expressed in terms of the approved budget
assigned to that work for a schedule activity or work breakdown structure component.

Formula

∑==
current

start
completedPVBCWPEAV)(

Legend:
EV = Earned Value

BCWP = Budgeted Cost of Work Performed
PV = Planned Value

Responsible for
Gathering Data

Project Manager

Gathering frequency When needed

Gathering
methodology

Semi-automatic

NOTE : e.g. using internal time planning & tracking systems or e.g. MS-Project, Primavera

Examples • http://en.wikipedia.org/wiki/Earned_value_management

Comments/Notes • Also referred to as the budgeted cost of work performed (BCWP)
• Tracking EAV will allow to understand if the plan is going to follow the expectations
• It can be useful to have a further split of main figures by profile (at least covering

functional vs. non-functional processes) because their different average/median daily
cost (e.g. a project manager or a technical architect will cost more than a programmer,
but probably having different % of allocation during the project lifetime.

Possible associated
questions

• Is the project progressing according to plans?
• Are we tracking at the proper level of granularity our internal cost figures for any

profile?
• …

WP-2011-01 Top10 Metrics – Metric Cards - L.Buglione 2011 Page 17/18

http://en.wikipedia.org/wiki/Earned_value_management

3.10 TEC – Test Coverage
Measure Name TEC – Test Coverage ISO/IEC 15504 ENG.8

Purpose To measure the level of testing depth on structural elements of the software (e.g. statement
coverage).

Entity Process Attribute Testability

SLC phase where
applied

Testing phase

Unit of Measure(s) Test Case; Requirements

Measurement Scale Ratio

Counting rule To calculate the ratio between the number of test cases planned and executed and the
requirements from which they come from.

NOTE : such ratio should be calculated maintaining proportionality between the upper and lower part of
the formula. It can be done counting test case and requirements referred to the same project/product
attribute (e.g. functionality, or complexity)

Formula

REQ
TCTEC =

Legend:
TEC = Test Coverage ratio

TC = Test Cases
REQ = no. of requirements

Responsible for
Gathering Data

Test Manager

Gathering frequency At each requirements change.

Gathering
methodology

Automatic

NOTE : typically requirement and testing tools provide a traceability matrix for determining such TEC
value.

Examples • http ://qtest.qbilt.org/doc/qtest-manual.pdf
• http://www.slidefinder.net/t/theory_predicate_complete_test_coverage/14849375

Comments/Notes • Two possible definitions of test coverage from ISO standards are: (1) the degree to
which a given test or set of tests addresses all specified requirements for a given system
or component (ISO/IEC 24765:2009 Systems and software engineering
vocabulary) (2) extent to which the test cases test the requirements for the system or
software product (ISO/IEC 12207:2008 Systems and software engineering--Software
life cycle processes, 4.51)

• Since requirements can be referred to different entities and related attributes, such
traceability matrix should be classified by those proxies in order to check a proper
coverage level also looking to a more detailed level (e.g. looking at the product entity, a
first-level classification could be the one proposed in ISO/IEC 14143-1:2007 standard,
classifying product requirements into functional, quality and technical. A second-level
classification e.g. for the quality ones, can be the one provided by the quality model in
ISO/IEC 9126-1:2001 with 6 main characteristics and 27 sub-characteristics, etc.)

Possible associated
questions

• Are the requirements sufficiently verified?
• Which is the percentage of test cases against the project requirements?
• Are the test cases properly balanced against the different requirement types (functional,

quality, technical), according to ISO/IEC 14143-1:2007 taxonomy?
• …

--- End of the Document ---

WP-2011-01 Top10 Metrics – Metric Cards - L.Buglione 2011 Page 18/18

http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
http://www.slidefinder.net/t/theory_predicate_complete_test_coverage/14849375
http://qtest.qbilt.org/doc/qtest-manual.pdf
http://qtest.qbilt.org/doc/qtest-manual.pdf

	1 Document Information
	1.1 Executive Summary
	1.2 History
	1.3 Acronyms
	1.4 References

	2 Introduction
	2.1 Background and Rationale
	2.2 How Much to Measure?
	2.3 Metric Cards

	3 Metrics cards
	3.1 SPS – Software Physical Size
	3.2 SFS – Software Functional Size
	3.3 CYC – McCabe Cyclomatic Complexity
	3.4 SDE – Software Development Effort
	3.5 SDD – Software Development Duration
	3.6 SDR – Software Defect Rate
	3.7 CPI – Cost Performance Index
	3.8 SPI – Schedule Performance Index
	3.9 EAV – Earned Value
	3.10 TEC – Test Coverage

